本站为【传爱成考】旗下网站,主要提供免费山东成人高考报名政策与资讯,信息仅供学习交流,非官方网站,具体信息以山东省教育考试院www.sdzk.cn为准。

2025年山东成考报名辅导入口

【山东成考专升本】数学1--多元函数微分学知识点睛

山东成考报名网 发布时间:2018-04-01 01:00:18

多元函数微分学知识点睛

知识结构:

 

必备基础知识

偏导数的概念(增量比值的极限)几元函数就由几个偏导数

1)函数在点处对的偏导数

=

2)函数在点处对的偏导数

=

全微分的定义如果函数在点(xy)的全增量

Dz=f(x+Dxy+Dy)-f(xy)

可表示为

其中AB不依赖于DxDy而仅与xy有关,则称函数在点(xy)可微分,而称ADx+BDy为函数在点(xy)的全微分,记作,即

=

如果函数在区域D内各点处都可微分,那么称这函数在D内可微分。

全微分存在的充分必要条件

(必要条件):如果函数在点可微分,则该函数在点的偏导数必存在,且函数在点的全微分为:

(充分条件) 如果函数的偏导数在点连续,则该函数在点可微分.习惯上,记全微分为:

★二阶偏导数

1)纯偏导

一阶偏导对,二阶偏导还是对

一阶偏导对,二阶偏导还是对

2)混合偏导

一阶偏导对,二阶偏导对

一阶偏导对,二阶偏导对

★二元函数的极值定义

设函数z=f(x,y)在点(x0,y0)的某个邻域内有定义,如果对于该邻域内任何异于(x0,y0)的点(x,y),都有

f(x,y)<f(x0,y0)(或f(x,y)>f(x0,y0)),

则称函数在点(x0,y0)有极大值(或极小值)f(x0,y0).

极大值、极小值统称为极值.使函数取得极值的点称为极值点。

主要考察知识点和典型例题:

考点一:偏导数的计算(对谁求偏导,谁是变量,其余看成常数)

根据偏导数的定义,偏导数的本质是增量比值的极限,而增量中只有一个变量发生了变化,其余的变量不变(不变就是常数),所以求偏导数的方法和求导数的方法是一样的

典型例题在点处的偏导数.

:(1)对求偏导,把为变量,函数中的看成常数,则:

2)对求偏导,把为变量,函数中的看成常数,则:

往年真题设函数,则等于(A)

A.

B.

C.

D.

是对求偏导,把为变量,函数中的看成常数,则:

 

 

考点二:全微分计算(求全微分就是把所有的偏导数都求出来,乘上相应变量的微分后相加)

典型例题设函数,则全微分等于_______

解:

考点三:复合函数的偏导数——作为一般掌握

(同路相乘,异路相加,同级不通路)

1、中间变量是一元函数的情形

复合函数

链式法则如图示:

 

公式中的导数称为全导数

 


免费领取成人高考复习通关资料包

声明:

(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

(二)网站文章免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。

本文地址:http://www.sdcrgk.cn/zsbsx/3205.html

山东成考交流群

山东成考交流群

与考生自由互动、并且能直接与资深老师进行交流、解答。